Differential Effects of HCN Channel Block on On and Off Pathways in the Retina as a Potential Cause for Medication-Induced Phosphene Perception.

نویسندگان

  • Sebastian Bemme
  • Michael Weick
  • Tim Gollisch
چکیده

Purpose Phosphene perception is a characteristic side effect of heart rate-reducing medication that acts on hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. It is hypothesized that these phosphenes are caused by blocking HCN channels in photoreceptors and neurons of the retina, yet the underlying changes in visual signal processing in the retina caused by the HCN channel block are still unknown. Methods We examined the effects of pharmacologic HCN channel block on the encoding of visual signals in retinal ganglion cells by recording ganglion cell spiking activity from isolated mouse retinas mounted on multielectrode arrays. Spontaneous activity and responses to various visual stimuli were measured before, during, and after administration of 3 μM ivabradine. Results Retinal ganglion cells generally showed slower response kinetics and reduced sensitivity to high temporal frequencies under ivabradine. Moreover, ivabradine differentially affected the sensitivity of On and Off ganglion cells. On cells showed reduced response gain, whereas Off cells experienced an increase in response threshold. In line with these differential effects, Off cells, in contrast to On cells, also showed reduced baseline activity during visual stimulation and reduced spontaneous activity. Furthermore, Off cells, but not On cells, showed increased burst-like spiking activity in the presence of ivabradine. Conclusions Our data suggest that pharmacologic HCN channel block in the retina leads to a shift in the relative activity of the On and Off pathways of the retina. We hypothesize that this imbalance may underlie the medication-induced perception of phosphenes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 44: The Role of HCN Channels in T Cell Function

Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

P149: Statin and Vitamin D as a Prophylactic Medication for Migraine

Migraine is a primary headache disorder that is characterized by severe headaches and impairment of autonomic nervous system function. This neurovascular disorder ranks as the eighth cause of disability in the world. Migraine is basically an inflammation problem caused by activation of the trigeminal neurovascular complex. Neuropeptides like serotonin, calcitonin gene-related peptide (CGRP) and...

متن کامل

The theoretical study of adsorption of HCN gas on the surface of pristine, Ge, P and GeP-doped (4, 4) armchair BNNTs

In this research, the effects of HCN adsorption on the surface of the pristine, Ge, P, and GeP doped boron nitride nanotube (BNNTs) are investigated by using density function theory at the B3LYP/6–31G(d, p) level of theory. At the first step, we consider different configurations for adsorbing HCN molecule on the surface of BNNTs. The optimized models are used to calculate the structural, electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 58 11  شماره 

صفحات  -

تاریخ انتشار 2017